Siamese/Triplet Networks

Jia-Bin Huang

Virginia Tech

ECE 6554 Advanced Computer Vision

Today's class

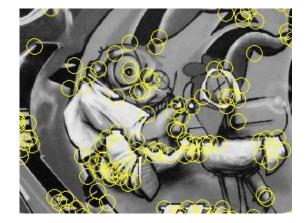
- Discussions
- Review important concepts of visual recognition
 - Instance recognition
 - Category recognition
 - Supervised pre-training
 - Understanding/visualizing
 - Segmentation networks
- Siamese/Triplet networks for metric learning

Discussion – Think-pair-share

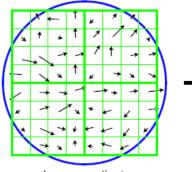
- FaceNet: A unified embedding for face recognition and clustering. F. Schroff, D. Kalenichenko, J Philbin, ICCV 2015
- Discuss
 - strength,
 - weakness, and
 - potential extension
- Share with class

Keypoint detection and descriptors

- **Keypoint detection**: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG



- **Descriptors**: robust and selective
 - spatial histograms of orientation
 - SIFT



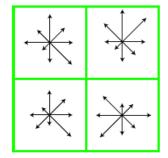


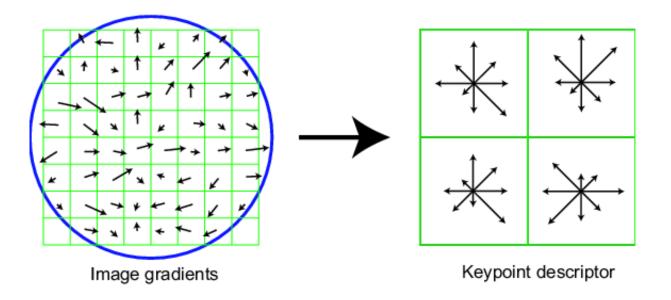
Image gradients

Keypoint descriptor

SIFT descriptor

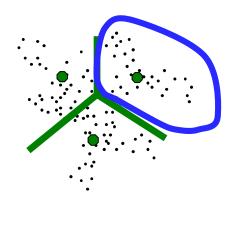
Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor



Visual Words

 Example: each group of patches belongs to the same visual word



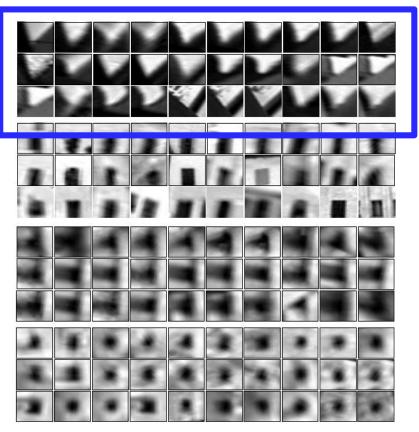
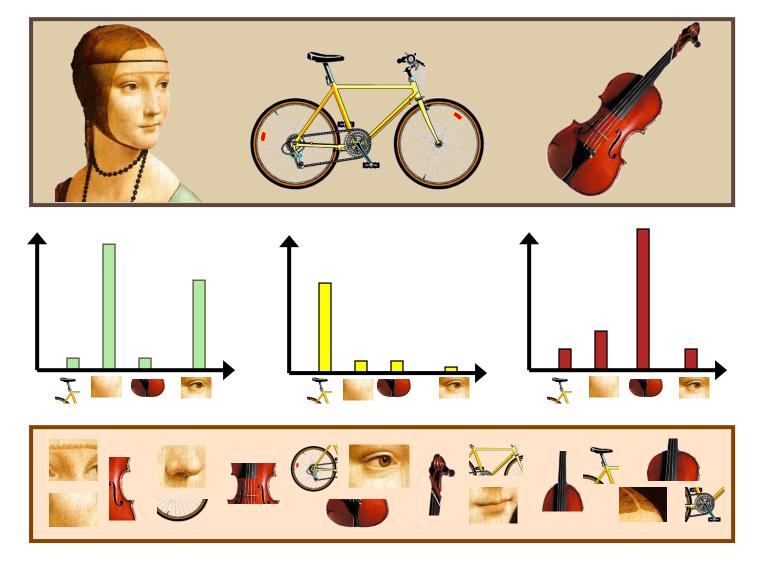


Figure from Sivic & Zisserman, ICCV 2003

Bag of Words Models



Inverted file index

 Database images are loaded into the index mapping words to image numbers

Spatial Verification: two basic strategies

• RANSAC

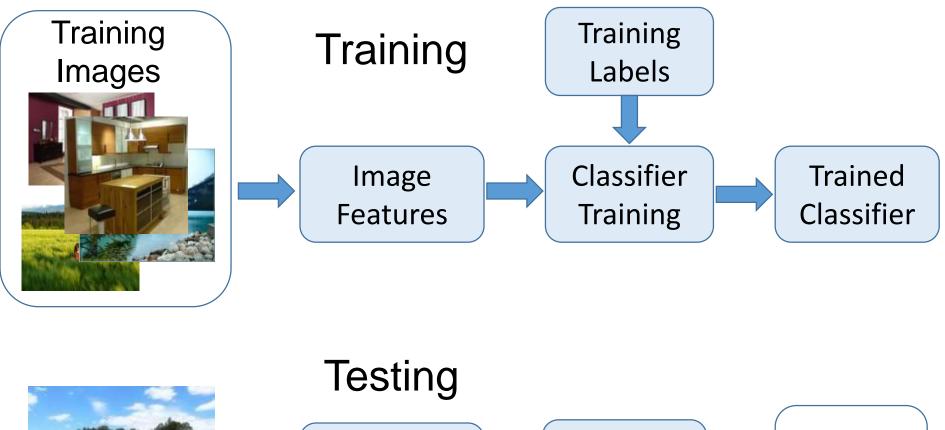
- Typically sort by BoW similarity as initial filter
- Verify by checking support (inliers) for possible transformations
 - e.g., "success" if find a transformation with > N inlier correspondences

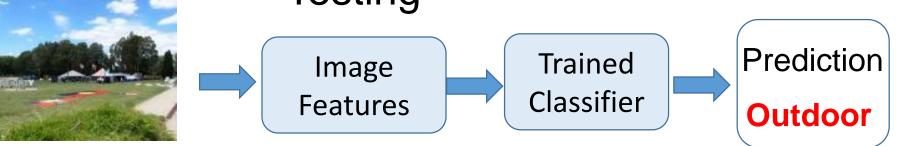
Generalized Hough Transform

- Let each matched feature cast a vote on location, scale, orientation of the model object
- Verify parameters with enough votes

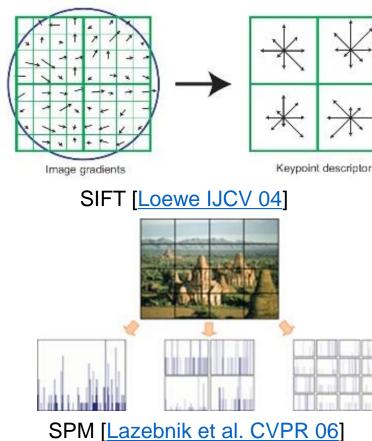
Image Categorization

Test Image



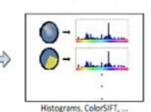


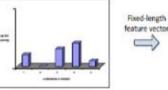
Features are the Keys



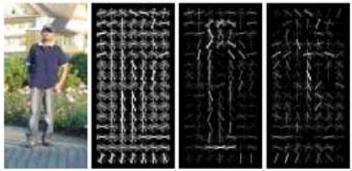
Point sampling strategy

Color descriptor computation





Image



HOG [Dalal and Triggs CVPR 05]



DPM [Felzenszwalb et al. PAMI 10]

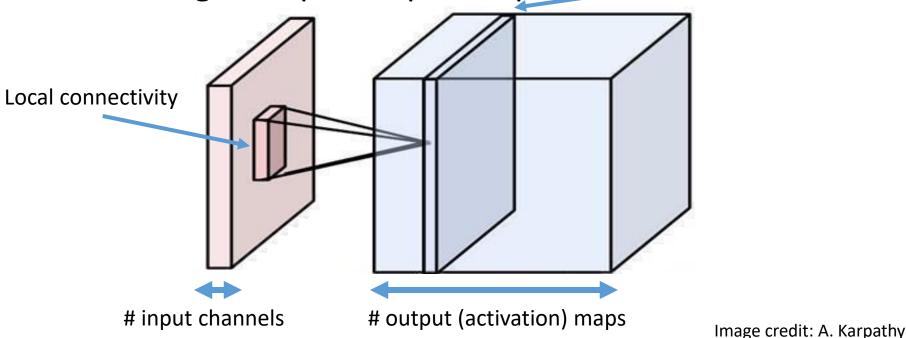
Bag-of-words model

Vector quantization

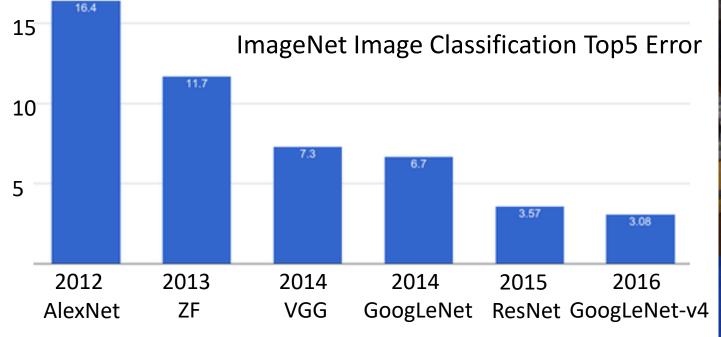
Color Descriptor [Van De Sande et al. PAMI 10]

Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels
- Handling multiple output maps
 Weight sharing

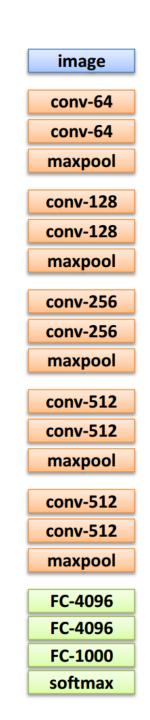


Progress on ImageNet



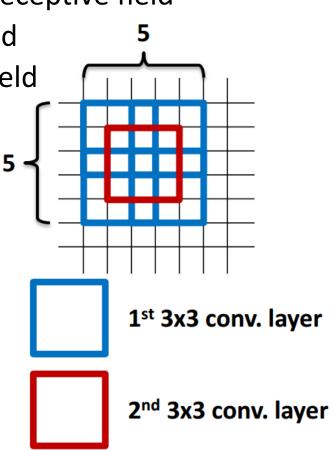
VGG-Net

- The deeper, the better
- Key design choices:
 - 3x3 conv. Kernels
 very small
 - conv. stride 1
 no loss of information
- Other details:
 - Rectification (ReLU) non-linearity
 - 5 max-pool layers (x2 reduction)
 - no normalization
 - 3 fully-connected (FC) layers



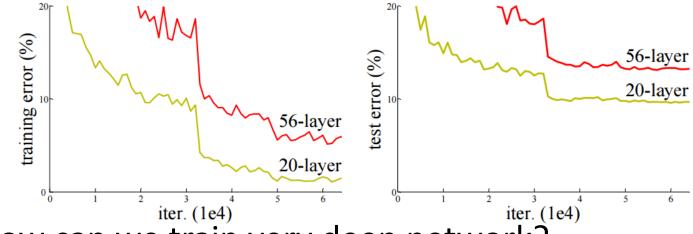
VGG-Net

- Why 3x3 layers?
 - Stacked conv. layers have a large receptive field
 - two 3x3 layers 5x5 receptive field
 - three 3x3 layers 7x7 receptive field
- More non-linearity
 - Less parameters to learn
 - ~140M per net

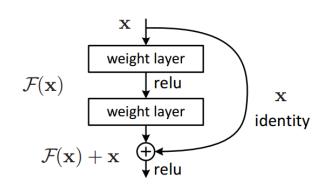


ResNet

• Can we just increase the #layer?



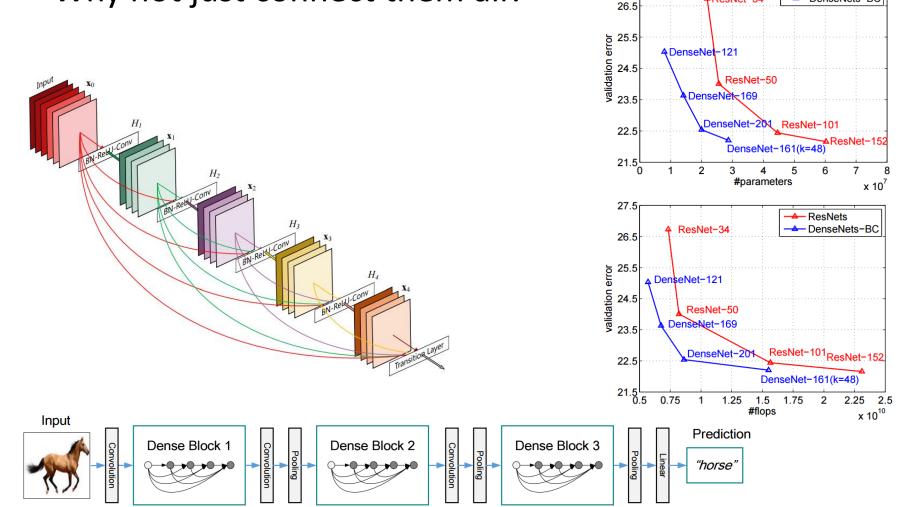
- How can we train very deep network?
 - Residual learning



method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

DenseNet

- Shorter connections (like ResNet) help
- Why not just connect them all?



27.5

- ResNets - DenseNets-BC

AResNet-34

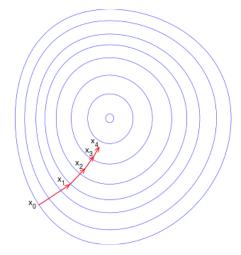
Training CNN with gradient descent

- A CNN as composition of functions $f_w(x) = f_L(\dots (f_2(f_1(x; w_1); w_2) \dots; w_L))$
- Parameters

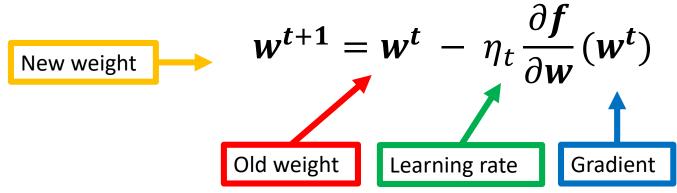
$$\boldsymbol{w} = (\boldsymbol{w}_1, \boldsymbol{w}_2, \dots \boldsymbol{w}_L)$$

• Empirical loss function

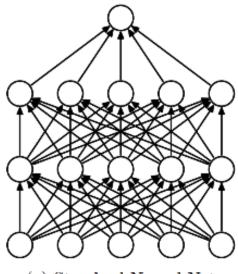
$$L(\boldsymbol{w}) = \frac{1}{n} \sum_{i} l(z_i, f_{\boldsymbol{w}}(\boldsymbol{x}_i))$$



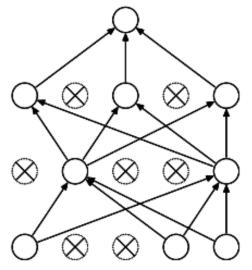
Gradient descent



Dropout



(a) Standard Neural Net



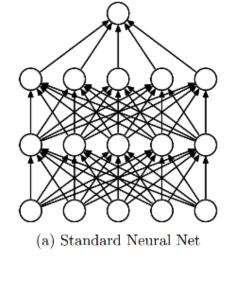
(b) After applying dropout.

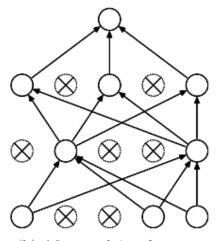
Intuition: successful conspiracies

- 50 people planning a conspiracy
- Strategy A: plan a big conspiracy involving 50 people
 - Likely to fail. 50 people need to play their parts correctly.
- Strategy B: plan 10 conspiracies each involving 5 people
 - Likely to succeed!

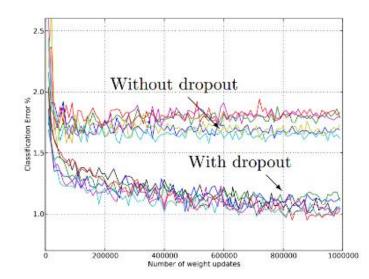
Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

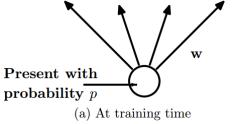
Dropout

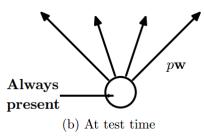




(b) After applying dropout.







Main Idea: approximately combining exponentially many different neural network architectures efficiently

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SVM on Fisher Vectors of Dense SIFT and Color Statistics	-	-	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-	-	26.2
Conv Net + dropout (Krizhevsky et al., 2012)	40.7	18.2	-
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Data Augmentation (Jittering)

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion



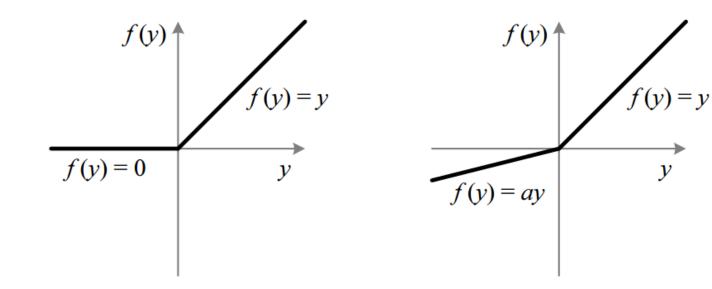
Deep Image [<u>Wu et al. 2015</u>]

Horizontal stretch More Horizontal stretch

Vertical stretch

More vertical stretch

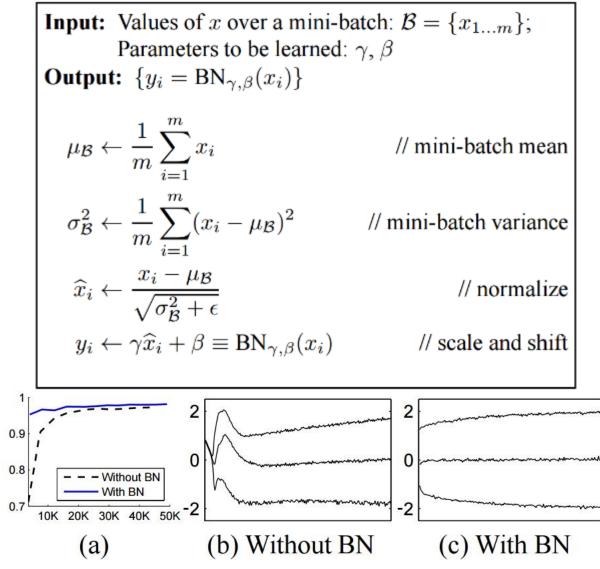
Parametric Rectified Linear Unit



	team	top-5 (test)
in competition ILSVRC 14	MSRA, SPP-nets [11]	8.06
	VGG [25]	7.32
	GoogLeNet [29]	6.66
post-competition	VGG [25] (arXiv v5)	6.8
	Baidu [32]	5.98
	MSRA, PReLU-nets	4.94

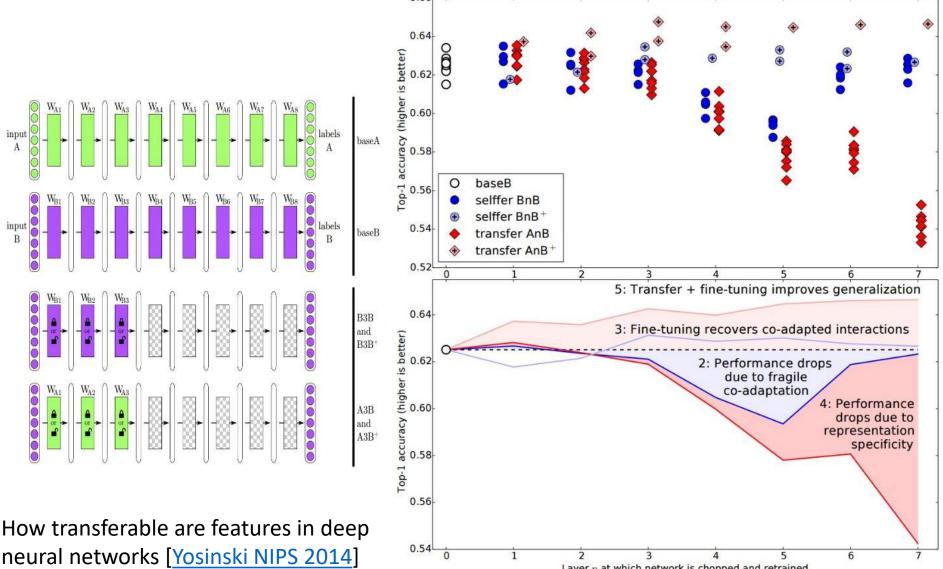
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [He et al. 2015]

Batch Normalization



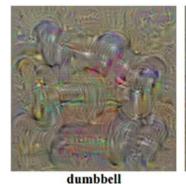
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [<u>loffe and Szegedy 2015</u>]

How transferable are features in CNN? 0.66

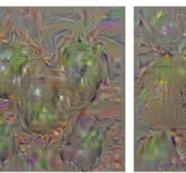


Layer n at which network is chopped and retrained

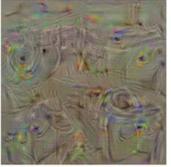
Find images that maximize some class scores



dalmatian



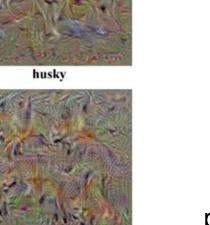
bell pepper

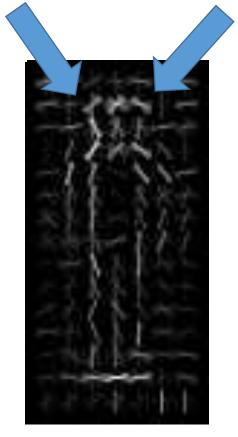


washing machine

computer keyboard

lemon



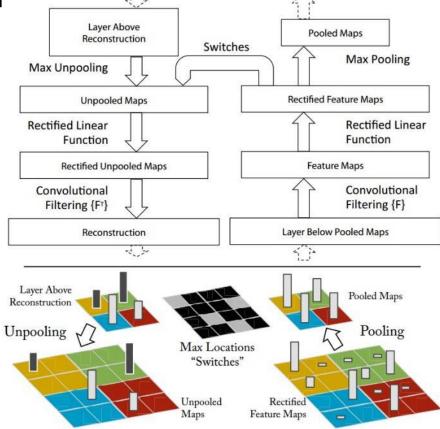


person: HOG template

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps [Simonyan et al. ICLR Workshop 2014]

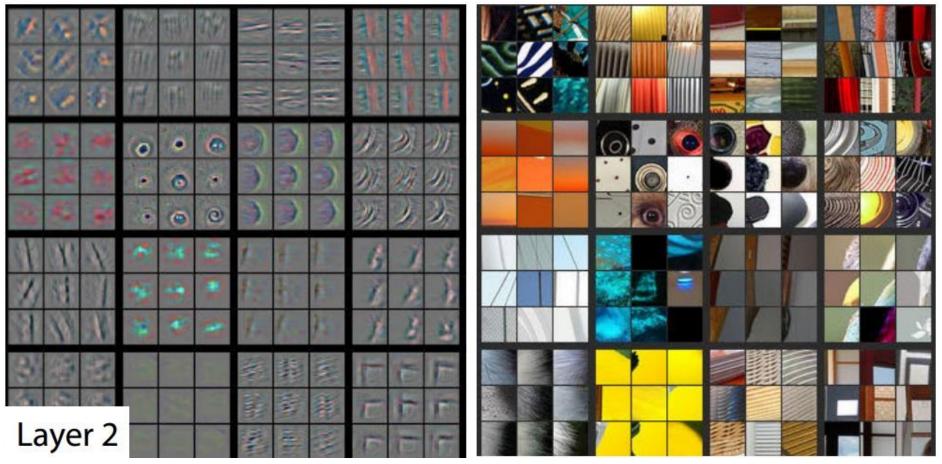
Map activation back to the input pixel space

What input pattern originally caused a given activation i

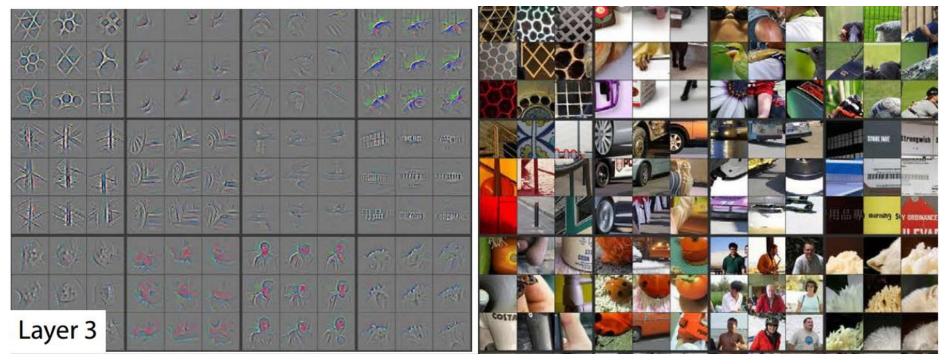


Layer 1

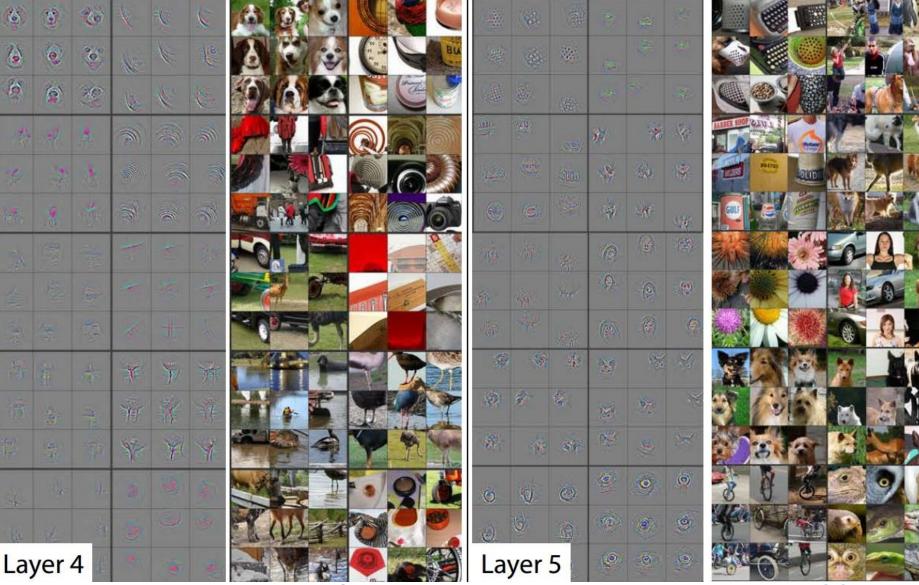
Layer 2



Layer 3



Layer 4 and 5



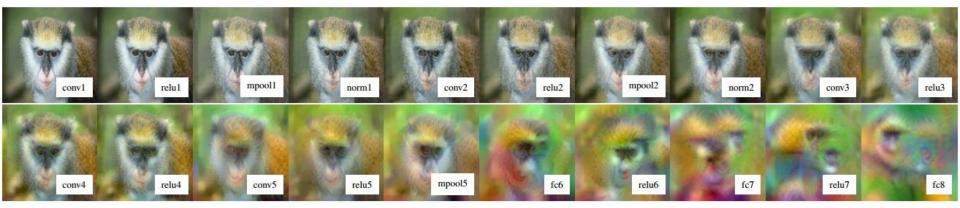
Invert CNN features

• Reconstruct an image from CNN features

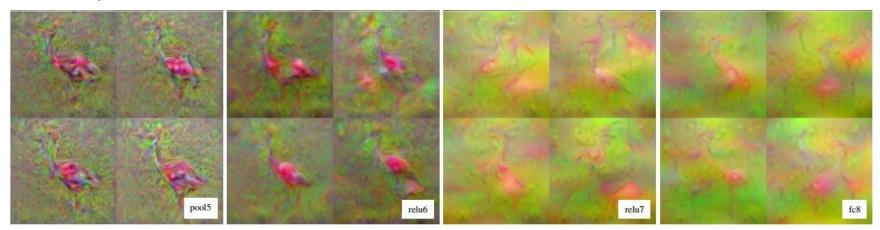
Understanding deep image representations by inverting them [Mahendran and Vedaldi CVPR 2015]

CNN Reconstruction

Reconstruction from different layers

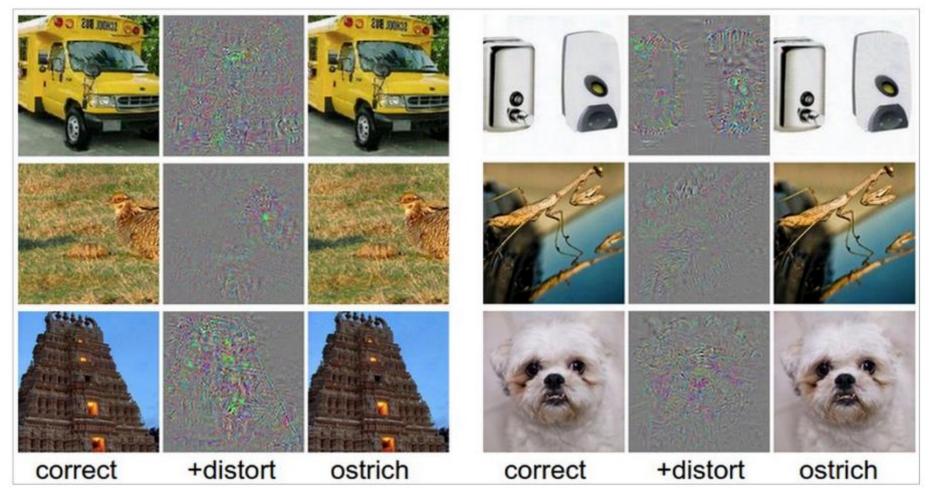


Multiple reconstructions



Understanding deep image representations by inverting them [Mahendran and Vedaldi CVPR 2015]

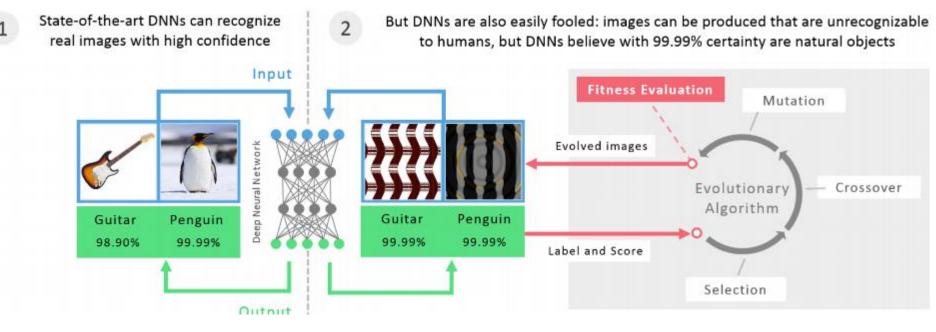
Breaking CNNs



Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the resulting image (right).

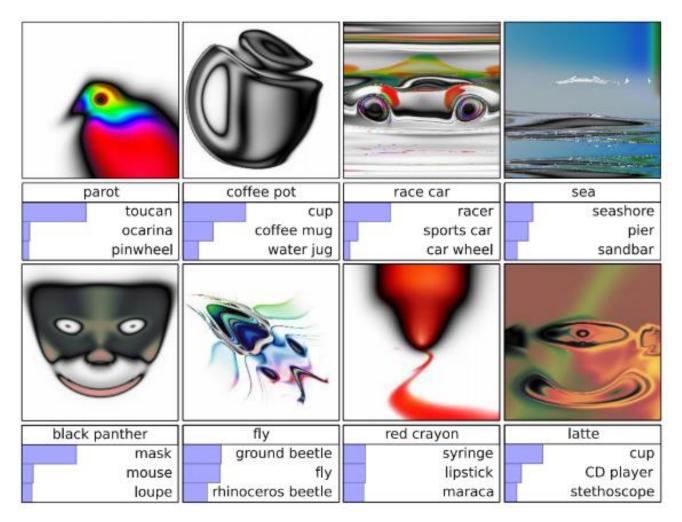
Intriguing properties of neural networks [Szegedy ICLR 2014]

Breaking CNNs



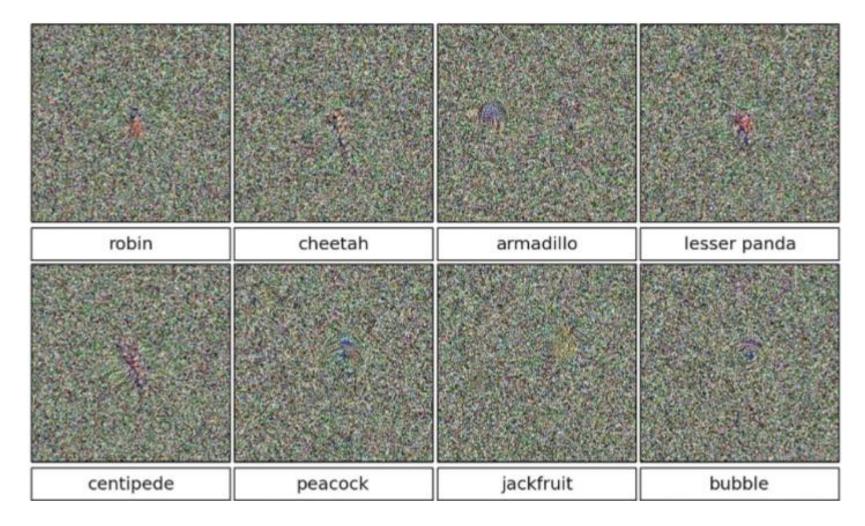
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]

Images that both CNN and Human can recognize



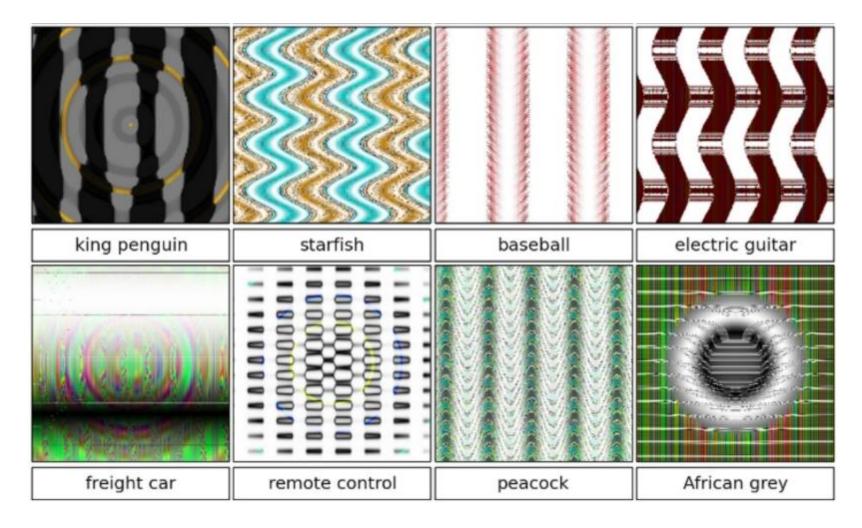
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]

Direct Encoding



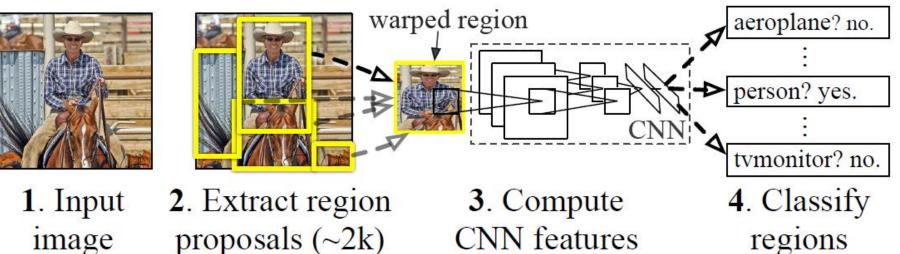
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]

Indirect Encoding



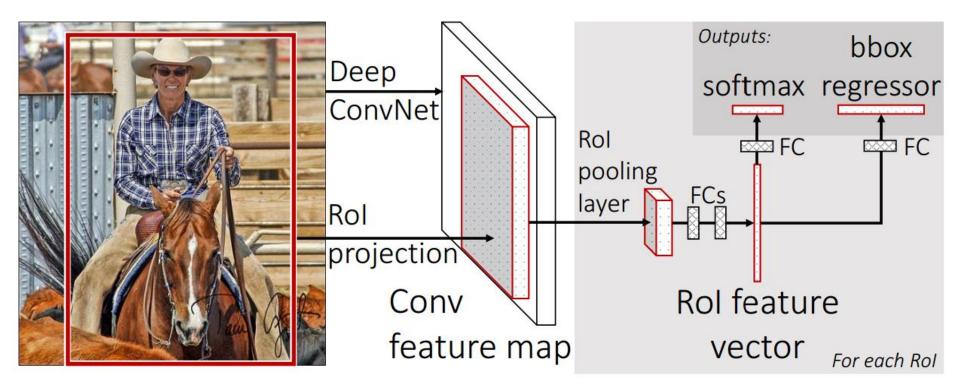
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]

R-CNN (Girshick et al. CVPR 2014)



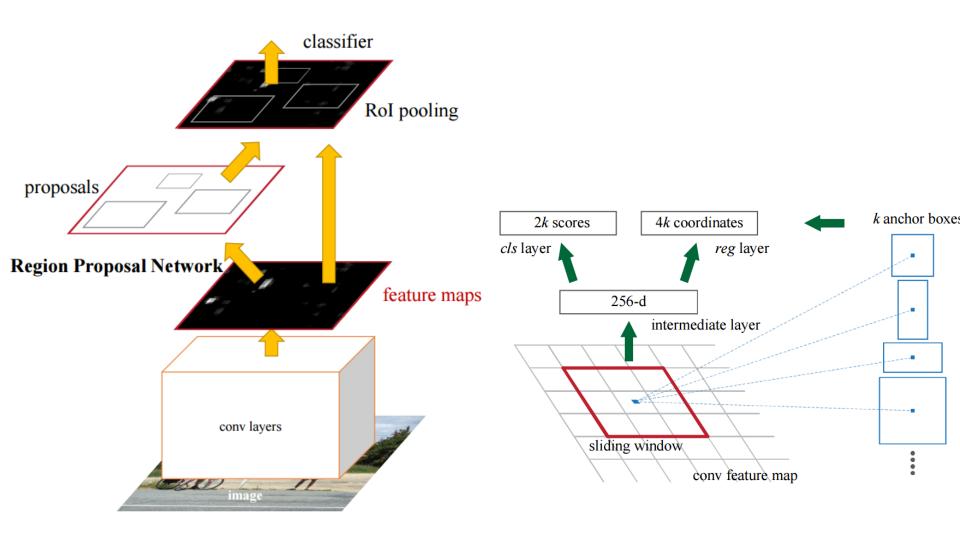
- Replace sliding windows with "selective search" region proposals (Uijilings et al. IJCV 2013)
- Extract rectangles around regions and resize to 227x227
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM

http://arxiv.org/pdf/1311.2524.pdf

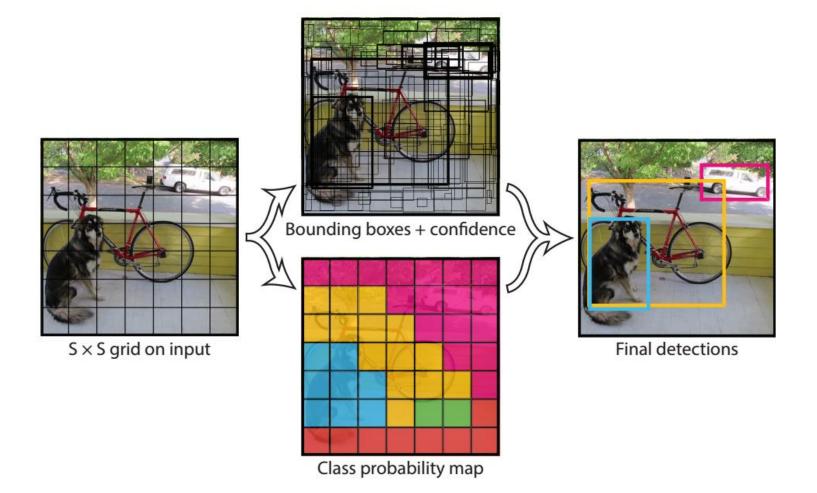


method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
SPPnet BB [11] [†]	$07 \setminus diff$	73.9	72.3	62.5	51.5	44.4	74.4	73.0	74.4	42.3	73.6	57.7	70.3	74.6	74.3	54.2	34.0	56.4	56.4	67.9	73.5	63.1
R-CNN BB [10]	07	73.4	77.0	63.4	45.4	44.6	75.1	78.1	79.8	40.5	73.7	62.2	79.4	78.1	73.1	64.2	35.6	66.8	67.2	70.4	71.1	66.0
FRCN [ours]	07	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8	66.9
FRCN [ours]	$07 \setminus diff$	74.6	79.0	68.6	57.0	39.3	79.5	78.6	81.9	48.0	74.0	67.4	80.5	80.7	74.1	69.6	31.8	67.1	68.4	75.3	65.5	68.1
FRCN [ours]	07+12	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4	70.0

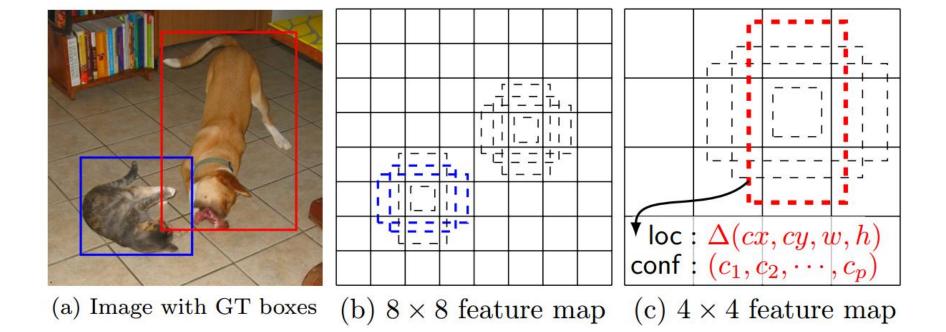
Fast RCNN, ICCV 2015



Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS 2015

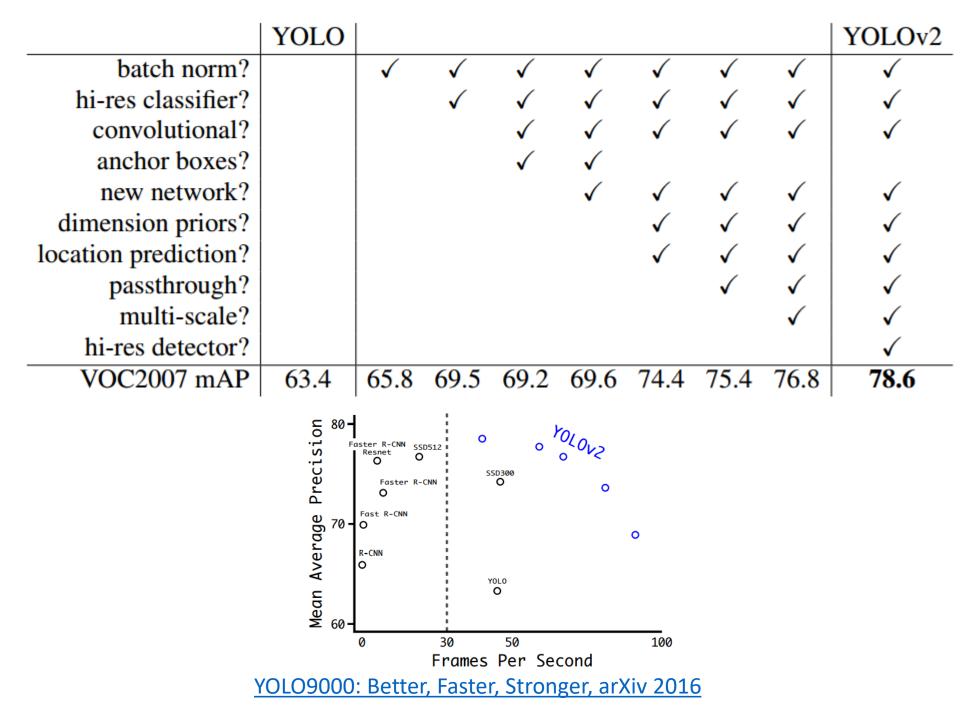


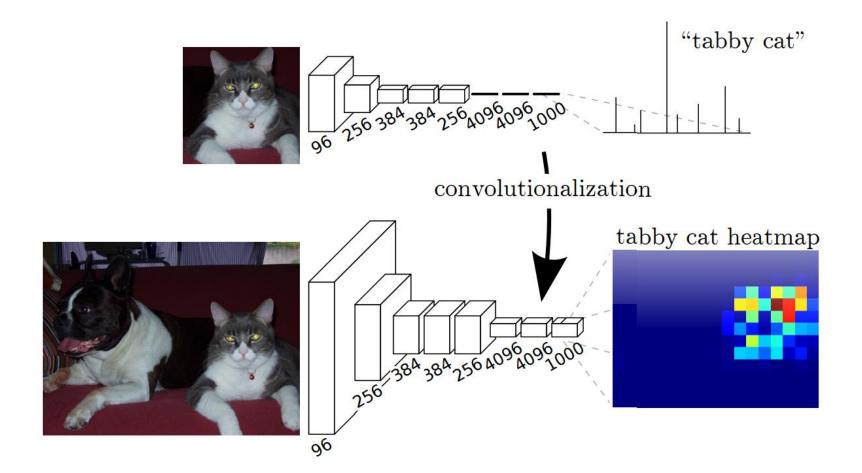
YOLO: Real-Time Object Detection, CVPR 2016



Method	mAP	FPS	batch size	# Boxes	Input resolution			
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$			
Fast YOLO	52.7	155	1	98	448×448			
YOLO (VGG16)	66.4	21	1	98	448×448			
SSD300	74.3	46	1	8732	300×300			
SSD512	76.8	19	1	24564	512×512			
SSD300	74.3	59	8	8732	300 imes 300			
SSD512	76.8	22	8	24564	512×512			

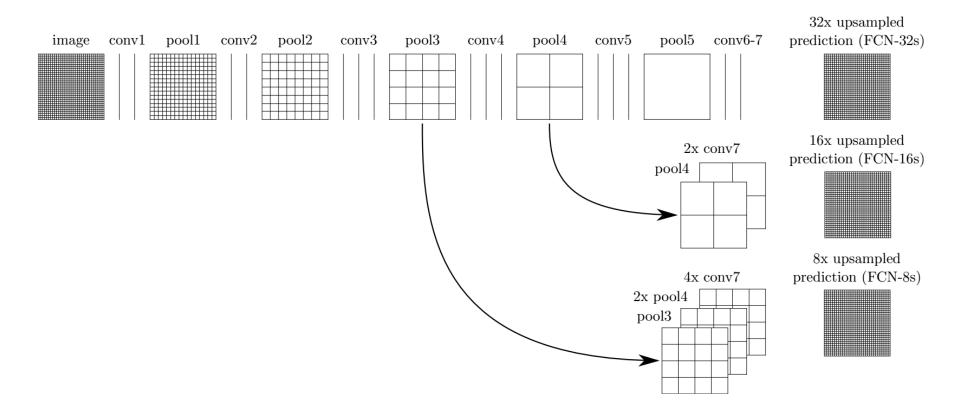
SSD: Single Shot MultiBox Detector, ECCV 2016



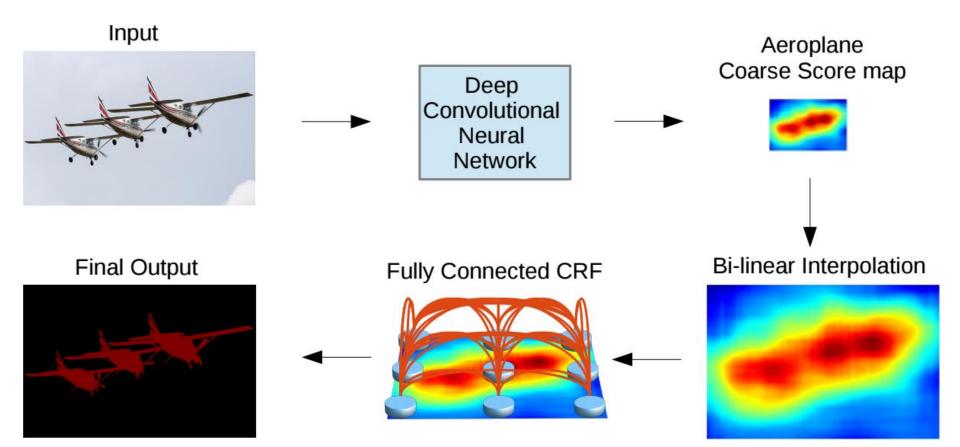


Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Combining what and where

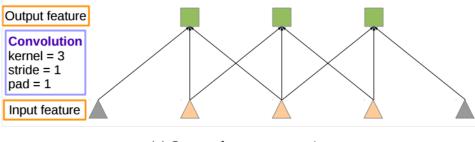


Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

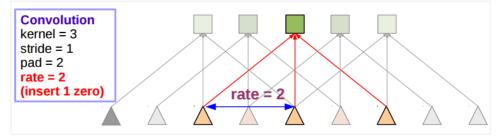


DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, 2016

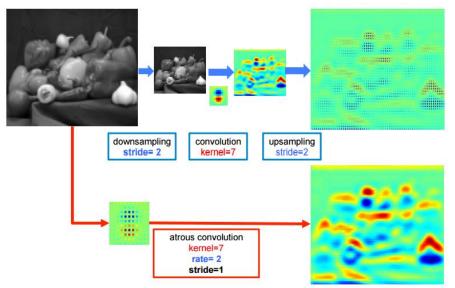
Atrous convolution



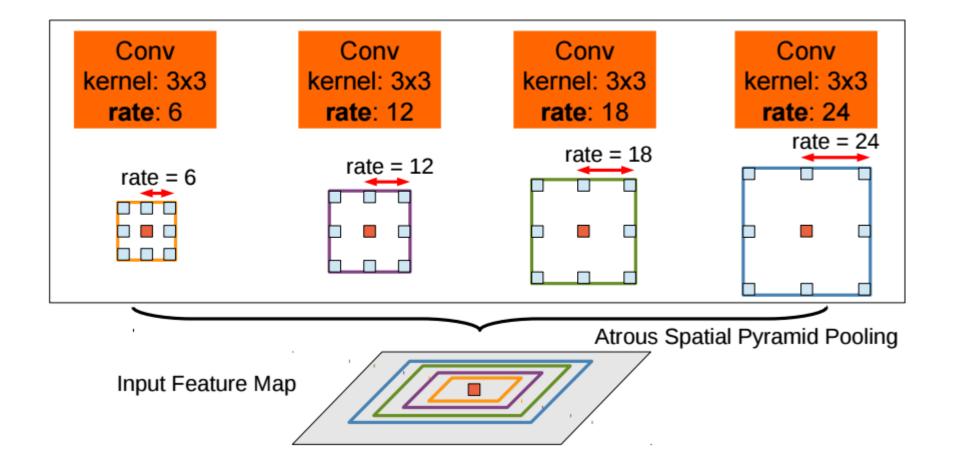
(a) Sparse feature extraction



(b) Dense feature extraction



Atrous spatial pyramid pooling



Dilated convolution

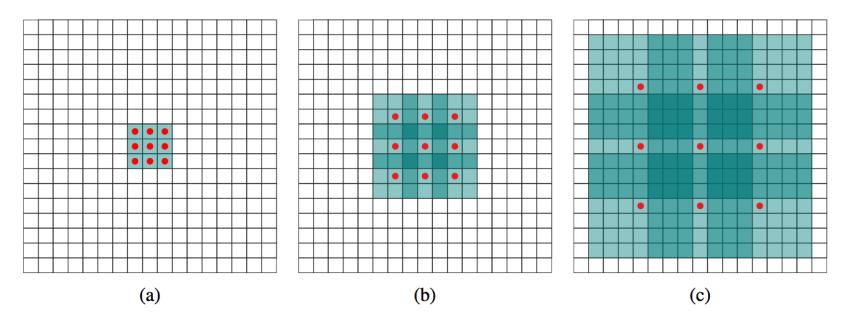
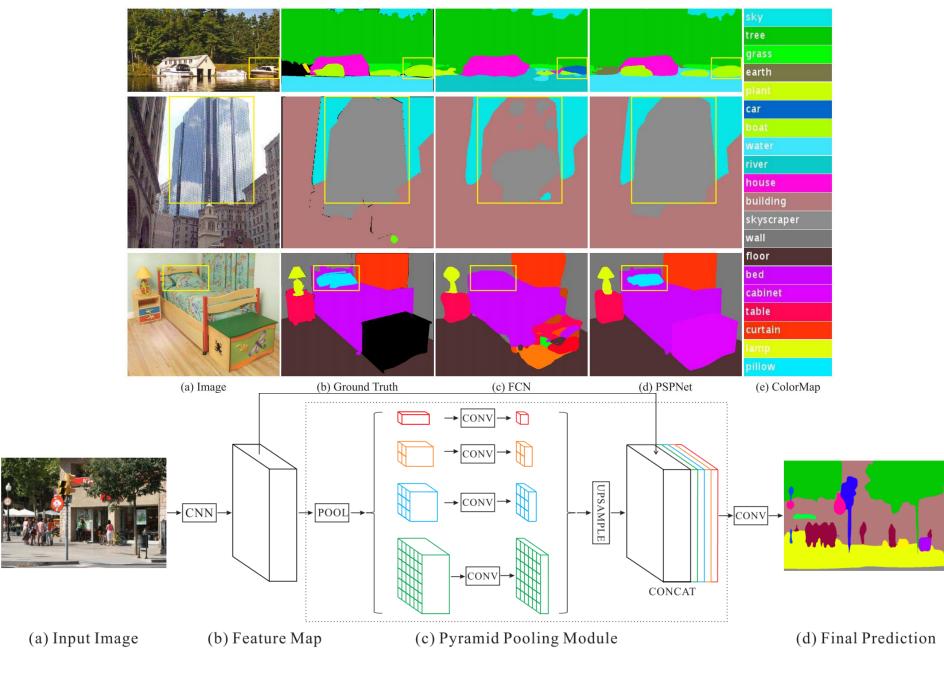


Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Multi-scale Context Aggregation by Dilated Convolutions, ICLR 2016

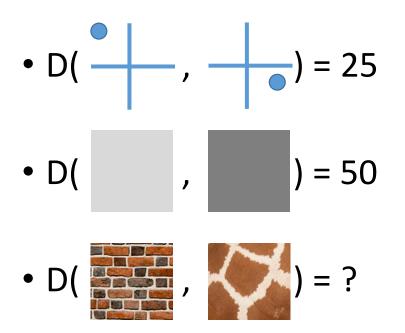


Pyramid Scene Parsing Network, 2016

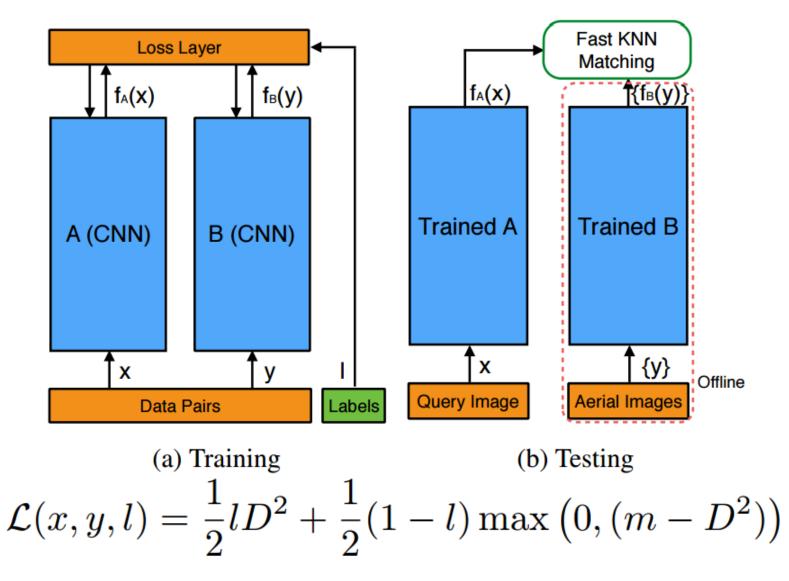
Pyramid Scene Parsing Network, 2016

Siamese/Triplet networks for distance metric learning

- Distance metric learning
 - Learn feature embedding so that the distances capture the semantic similarity
- D('Tech', 'Taco') = 3

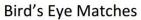


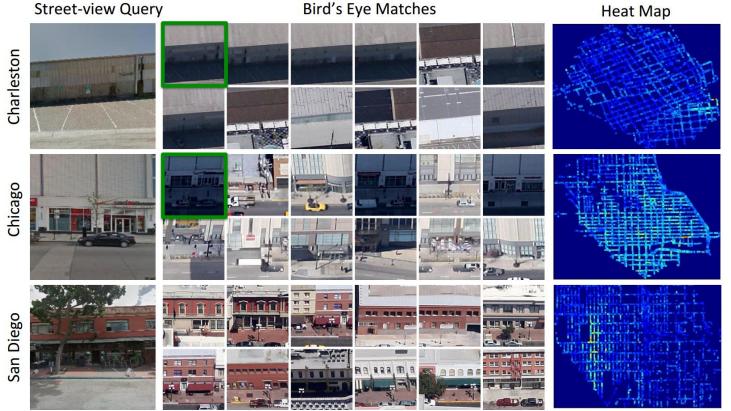
Siamese Network



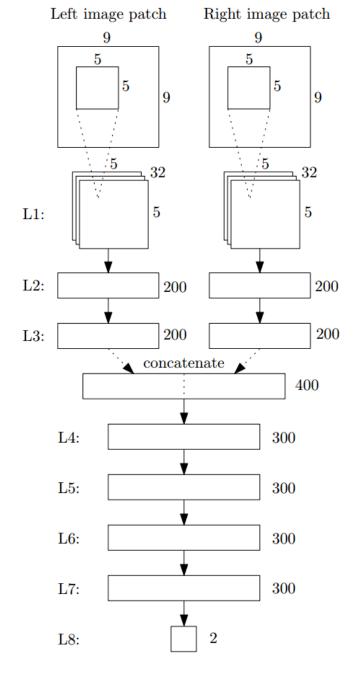
Learning Deep Representations for Ground-to-Aerial Geolocalization, CVPR 2015

Street-view Query





Learning Deep Representations for Ground-to-Aerial Geolocalization, CVPR 2015

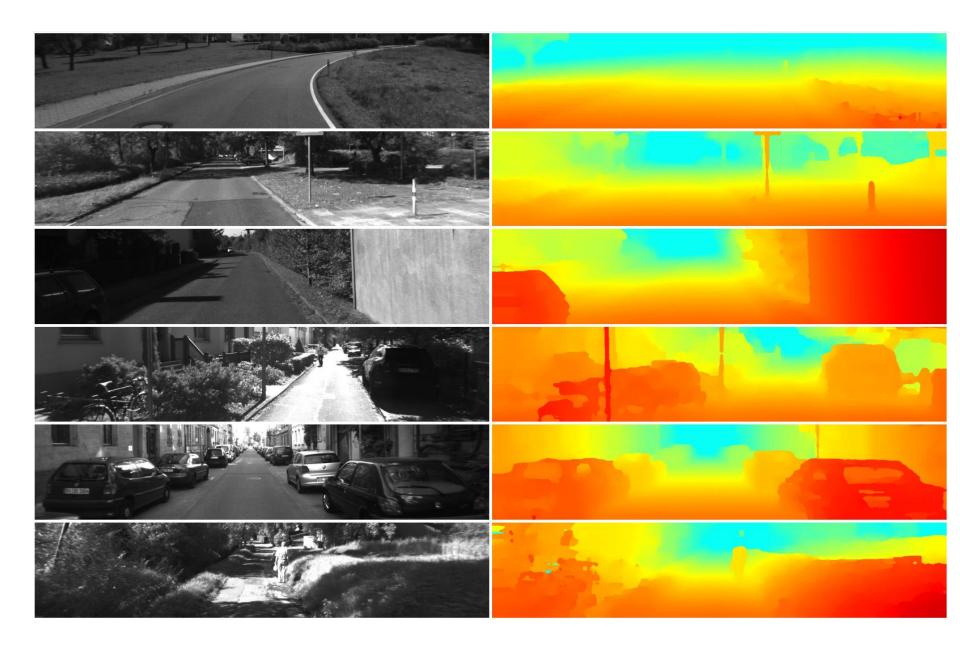


 $< \mathcal{P}^{L}_{\mathbf{q}\times\mathbf{q}}(\mathbf{p}), \mathcal{P}^{R}_{\mathbf{q}\times\mathbf{q}}(\mathbf{q}) >$

Negative examples $\mathbf{q} = (x - d + o_{\text{neg}}, y)$

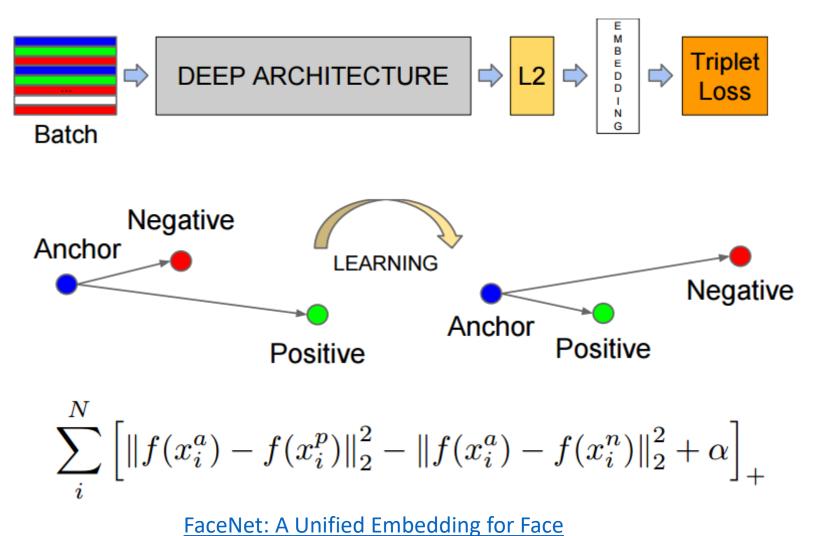
Positive examples $\mathbf{q} = (x - d + o_{\text{pos}}, y)$

Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR 2015



Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR 2015

Triplet loss



Recognition and Clustering, CVPR 2015

Problem: Multi-face tracking

<u>Tracking Persons-of-Interest via Adaptive</u> Discriminative Features, ECCV 2016

Major challenge: large appearance variations

Sojin

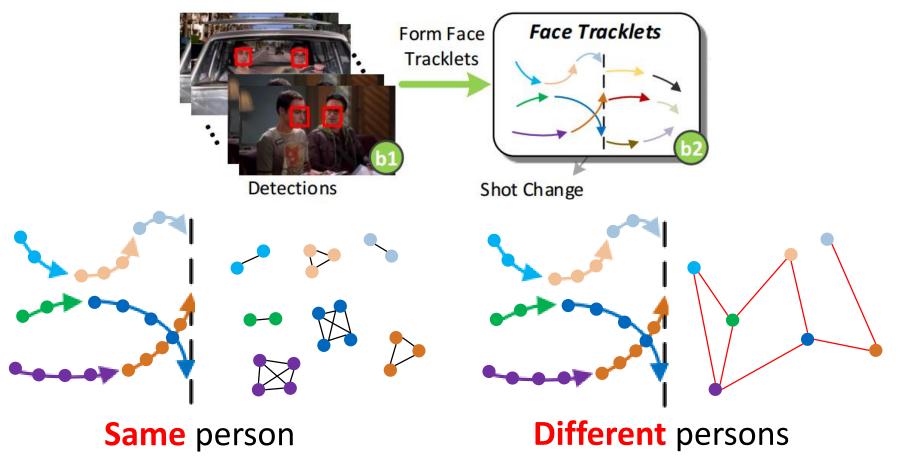
Minah

Yura

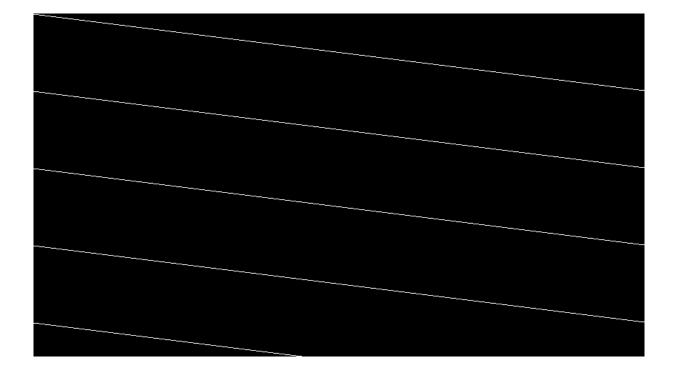
Hyeri

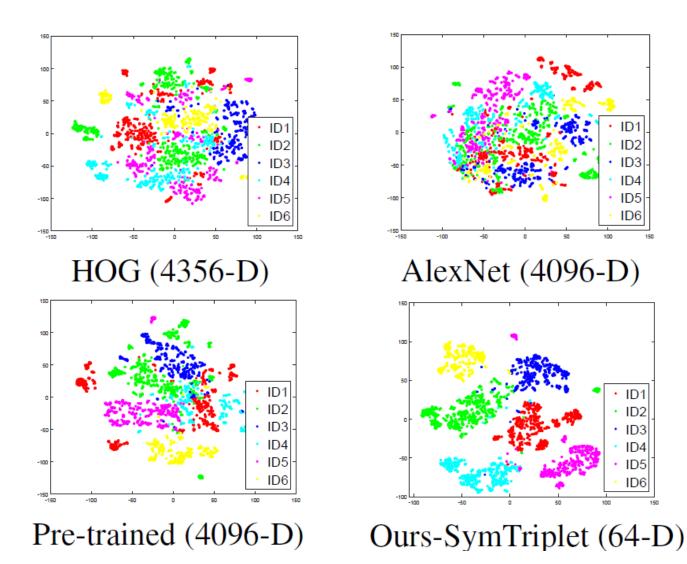
Need **discriminative** features

Discover constraints from videos



Qualitative results





ID1

ID2 ID3

ID4

ID5

ID6

ID1

ID2

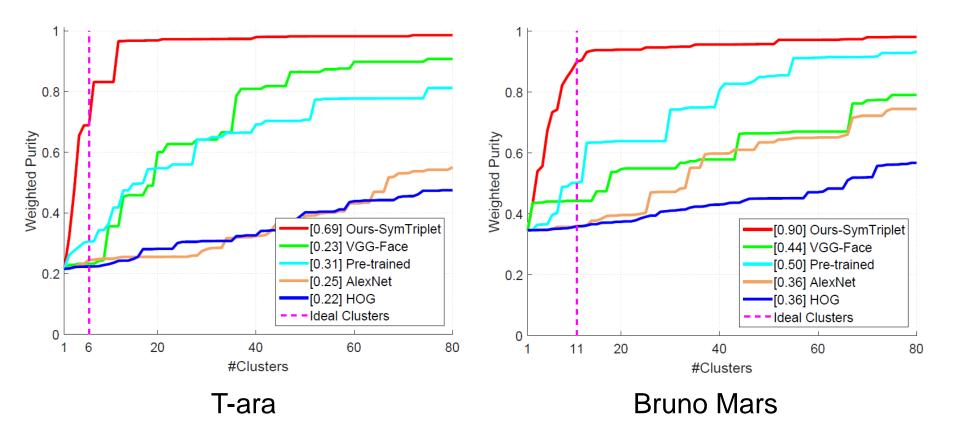
ID4

ID5

ID6

• ID3

Quantitative Results



Things to remember

- Learning distance is crucial for
 - Matching
 - Retrieval
 - Recognition
 - Re-identification
- Two common strategies
 - Siamese network
 - Triplet network